

Comissão de Estudos de Matérias Primas

RESINA PARA O PROCESSO CAIXA QUENTE (HOT BOX) PARA FUNDIÇÃO -DETERMINAÇÃO DO TEOR DE NITRATO DE AMÔNIA NO CATALISADOR

Método de Ensaio

Recomendação CEMP 100

Aprovada em: Fev/1983 Revisada em: Dez/2023

Folha: 1 de 3

SUMÁRIO

- 1_ Objetivo
- 2_ Documentos a consultar
- 3_ Definições
- 4_ Aparelhagem/reagentes
- 5_ Execução do ensaio
- 6_ Resultados

1 OBJETIVO

1.1_ Esta recomendação prescreve o método de ensaio para determinação do teor de nitrato de amônia em catalisador para resina caixa quente para fundição.

2 DOCUMENTO A CONSULTAR

2.1_ CEMP 152 – Materiais para fundição – Amostragem de material na forma líquida ou lama – Procedimento.

3_ DEFINIÇÕES

3.1_ Teor de nitrato de amônia em catalisador para resina caixa quente: quantidade de Nitrato de amônia existente no catalisador e que tem ação catalítica na cura de resinas caixa quente para fundição.

4_ APARELHAGEM / REAGENTES

- 4.1_ Balança analítica, com uma resolução mínima de 0,0001 g;
- 4.2 pH-metro com resolução mínima de 0,01;
- 4.3_ Agitador magnético ou bastão de vidro;
- 4.4_ Béquer de 250 ml;
- 4.5 Pipeta de 50 ml;
- 4.6 Bureta de 50 ml;
- 4.7_ Solução aquosa de piridina a 20 %;

Nota: O ensaio também poderá ser executado sem o uso da piridina, quando o catalisador não apresentar grandes complexidades na sua composição, visto que a massa tem como finalidade simplesmente o realce na titulação.

4.8

RESINA PARA O PROCESSO CAIXA QUENTE (HOT BOX) PARA FUNDIÇÃO -DETERMINAÇÃO DO TEOR DE NITRATO DE AMÔNIA NO CATALISADOR

Método de Ensaio

Recomendação CEMP 100 Aprovada em: Fev/1983

Revisada em: Pev/1983

Folha: 2 de 3

5_ EXECUÇÃO DO ENSAIO

- 5.1_ Pesar entre 1,0 e 1,5 g da amostra em um béquer de 250 ml previamente seco e tarado.
- 5.2_ Adicionar, através de pipeta, 50 ml da solução de piridina a 20 %.

Solução de Hidróxido de Sódio (NaOH) 0,01 N.

- 5.3_ Agitar para dissolver a amostra.
- 5.4_ Regular o pH-metro para leitura em milivolts.
- 5.5_ Fazer uma titulação prévia, sob agitação magnética ou manual, adicionando Hidróxido de Sódio (NaOH) 0,1 N de 2 em 2 ml e anotando os milivolts obtidos nestas adições.
- 5.6_ Paralelamente, para cada adição, ir calculando a diferença dos milivolts obtidos entre a leitura em questão e a anterior, até que a diferença tenha passado por um máximo (ponto de inflexão), e tenha começado a decrescer, quando então termina a titulação prévia.
- 5.7_ Observar em que adição de hidróxido de sódio 0,1 N se obteve a maior diferença de milivolts.
- 5.8 A partir daí, pesar uma nova amostra e proceder a execução dos itens 4.1 ao 4.4.
- 5.9_ Adicionar sob agitação magnética ou manual, 2 ml a menos da quantidade de hidróxido de sódio com o qual no item 4.7 foi obtido o ponto de inflexão.
- 5.10_ A partir deste ponto, continuar adicionando o hidróxido de sódio de 0,5 em 0,5 ml até se atingir o ponto de inflexão desta vez com a maior precisão, obedecendo o procedimento do item 5.6.
- 5.11_ Anotar os ml de hidróxido de sódio gastos onde se obteve a maior diferença de milivolts, tirar a média aritmética entre esses dois valores, que irá corresponder, na equação, ao valor V.
- 5.12_ No caso de se encontrar, para diferença máxima, dois valores de milivolts consecutivos iguais, o valor V da equação corresponderá à média aritmética entre os valores externos que geram as diferenças máximas.

Comissão de Estudos de Matérias Primas

RESINA PARA O PROCESSO CAIXA QUENTE (HOT BOX) PARA FUNDIÇÃO -DETERMINAÇÃO DO TEOR DE NITRATO DE AMÔNIA NO CATALISADOR

Método de Ensaio

Recomendação CEMP 100

Aprovada em: Fev/1983 Revisada em: Dez/2023

Folha: 3 de 3

6_ RESULTADOS

6.1_ O resultado é expresso em porcentagem, com precisão de 0,1 e será obtido através da seguinte fórmula:

$$NA = \frac{V \times N \times 0,08004}{MA} \times 100$$

Onde:

NA = teor de nitrato de amônia, em %;

V = volume de Hidróxido de Sódio (NaOH) gasto para se encontrar o ponto

de inflexão, em ml;

N = normalidade da solução de Hidróxido de Sódio (NaOH);

MA = massa da amostra, em g;

0,08004 = miliequivalente do nitrato de amônia.

HISTÓRICO DAS REVISÕES		
REVISÃO	ITENS REVISADOS	JUSTIFICATIVA
Dez/2023	Todos	Inclusão do item 2 (documentos a consultar)